Copied to
clipboard

G = C42.425C23order 128 = 27

286th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.425C23, C4.672- 1+4, C8⋊Q821C2, C4⋊C4.137D4, C82Q816C2, Q8.Q826C2, D4.Q826C2, C4.Q1629C2, D4⋊Q829C2, C2.33(D4○D8), C4⋊C8.77C22, (C4×C8).79C22, C2.33(Q8○D8), C22⋊C4.29D4, C4⋊C4.182C23, (C2×C8).169C23, (C2×C4).441C24, C23.304(C2×D4), C4⋊Q8.125C22, C4.Q8.44C22, C8⋊C4.34C22, C2.D8.42C22, (C4×D4).122C22, (C2×D4).184C23, C4⋊D4.48C22, C22⋊C8.68C22, Q8⋊C4.7C22, (C2×Q8).172C23, (C4×Q8).119C22, C22.D8.4C2, C22⋊Q8.48C22, D4⋊C4.54C22, C23.48D424C2, C23.20D429C2, (C22×C4).314C23, C23.19D4.4C2, C4.4D4.43C22, C22.701(C22×D4), C42.C2.28C22, C42.7C2217C2, C42.78C223C2, C23.41C239C2, C42.28C2210C2, C42⋊C2.171C22, C22.36C24.3C2, C2.89(C23.38C23), (C2×C4).565(C2×D4), (C2×C4⋊C4).656C22, SmallGroup(128,1975)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.425C23
C1C2C4C2×C4C22×C4C2×C4⋊C4C23.41C23 — C42.425C23
C1C2C2×C4 — C42.425C23
C1C22C42⋊C2 — C42.425C23
C1C2C2C2×C4 — C42.425C23

Generators and relations for C42.425C23
 G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=a2b2, ab=ba, cac=dad-1=a-1b2, eae=ab2, cbc=dbd-1=b-1, be=eb, dcd-1=bc, ece=a2b2c, de=ed >

Subgroups: 300 in 160 conjugacy classes, 84 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C422C2, C4⋊Q8, C4⋊Q8, C42.7C22, D4⋊Q8, C4.Q16, D4.Q8, Q8.Q8, C22.D8, C23.19D4, C23.48D4, C23.20D4, C42.78C22, C42.28C22, C82Q8, C8⋊Q8, C22.36C24, C23.41C23, C42.425C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2- 1+4, C23.38C23, D4○D8, Q8○D8, C42.425C23

Character table of C42.425C23

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M4N8A8B8C8D8E8F
 size 11114822444448888888444488
ρ111111111111111111111111111    trivial
ρ21111-11111-1-11-11-11-11-1-1-1-1-1-111    linear of order 2
ρ311111111-1-11-1-1-11-1-11-11-11-11-11    linear of order 2
ρ41111-1111-11-1-11-1-1-1111-11-11-1-11    linear of order 2
ρ51111-1111-11-1-111-1-11-1-11-11-111-1    linear of order 2
ρ611111111-1-11-1-111-1-1-11-11-11-11-1    linear of order 2
ρ71111-11111-1-11-1-1-11-1-1111111-1-1    linear of order 2
ρ81111111111111-1111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ911111-111-1-11-1-11-111-11-1-11-11-11    linear of order 2
ρ101111-1-111-11-1-11111-1-1-111-11-1-11    linear of order 2
ρ1111111-11111111-1-1-1-1-1-1-1111111    linear of order 2
ρ121111-1-1111-1-11-1-11-11-111-1-1-1-111    linear of order 2
ρ131111-1-1111-1-11-111-111-1-11111-1-1    linear of order 2
ρ1411111-111111111-1-1-1111-1-1-1-1-1-1    linear of order 2
ρ151111-1-111-11-1-11-111-111-1-11-111-1    linear of order 2
ρ1611111-111-1-11-1-1-1-1111-111-11-11-1    linear of order 2
ρ17222220-2-222-2-2-20000000000000    orthogonal lifted from D4
ρ182222-20-2-2-2222-20000000000000    orthogonal lifted from D4
ρ19222220-2-2-2-2-2220000000000000    orthogonal lifted from D4
ρ202222-20-2-22-22-220000000000000    orthogonal lifted from D4
ρ214-4-440000000000000000-22022000    orthogonal lifted from D4○D8
ρ224-4-440000000000000000220-22000    orthogonal lifted from D4○D8
ρ2344-4-400000000000000000220-2200    symplectic lifted from Q8○D8, Schur index 2
ρ2444-4-400000000000000000-2202200    symplectic lifted from Q8○D8, Schur index 2
ρ254-44-4004-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ264-44-400-44000000000000000000    symplectic lifted from 2- 1+4, Schur index 2

Smallest permutation representation of C42.425C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 53 47 58)(2 54 48 59)(3 55 45 60)(4 56 46 57)(5 42 61 52)(6 43 62 49)(7 44 63 50)(8 41 64 51)(9 34 21 37)(10 35 22 38)(11 36 23 39)(12 33 24 40)(13 28 18 31)(14 25 19 32)(15 26 20 29)(16 27 17 30)
(2 46)(4 48)(5 52)(6 41)(7 50)(8 43)(9 39)(10 35)(11 37)(12 33)(13 20)(15 18)(21 36)(22 38)(23 34)(24 40)(25 32)(26 28)(27 30)(29 31)(42 61)(44 63)(49 64)(51 62)(53 58)(54 56)(55 60)(57 59)
(1 44 45 52)(2 49 46 41)(3 42 47 50)(4 51 48 43)(5 58 63 55)(6 56 64 59)(7 60 61 53)(8 54 62 57)(9 18 23 15)(10 16 24 19)(11 20 21 13)(12 14 22 17)(25 35 30 40)(26 37 31 36)(27 33 32 38)(28 39 29 34)
(1 13)(2 19)(3 15)(4 17)(5 37)(6 35)(7 39)(8 33)(9 42)(10 49)(11 44)(12 51)(14 48)(16 46)(18 47)(20 45)(21 52)(22 43)(23 50)(24 41)(25 59)(26 55)(27 57)(28 53)(29 60)(30 56)(31 58)(32 54)(34 61)(36 63)(38 62)(40 64)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,53,47,58)(2,54,48,59)(3,55,45,60)(4,56,46,57)(5,42,61,52)(6,43,62,49)(7,44,63,50)(8,41,64,51)(9,34,21,37)(10,35,22,38)(11,36,23,39)(12,33,24,40)(13,28,18,31)(14,25,19,32)(15,26,20,29)(16,27,17,30), (2,46)(4,48)(5,52)(6,41)(7,50)(8,43)(9,39)(10,35)(11,37)(12,33)(13,20)(15,18)(21,36)(22,38)(23,34)(24,40)(25,32)(26,28)(27,30)(29,31)(42,61)(44,63)(49,64)(51,62)(53,58)(54,56)(55,60)(57,59), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (1,13)(2,19)(3,15)(4,17)(5,37)(6,35)(7,39)(8,33)(9,42)(10,49)(11,44)(12,51)(14,48)(16,46)(18,47)(20,45)(21,52)(22,43)(23,50)(24,41)(25,59)(26,55)(27,57)(28,53)(29,60)(30,56)(31,58)(32,54)(34,61)(36,63)(38,62)(40,64)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,53,47,58)(2,54,48,59)(3,55,45,60)(4,56,46,57)(5,42,61,52)(6,43,62,49)(7,44,63,50)(8,41,64,51)(9,34,21,37)(10,35,22,38)(11,36,23,39)(12,33,24,40)(13,28,18,31)(14,25,19,32)(15,26,20,29)(16,27,17,30), (2,46)(4,48)(5,52)(6,41)(7,50)(8,43)(9,39)(10,35)(11,37)(12,33)(13,20)(15,18)(21,36)(22,38)(23,34)(24,40)(25,32)(26,28)(27,30)(29,31)(42,61)(44,63)(49,64)(51,62)(53,58)(54,56)(55,60)(57,59), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (1,13)(2,19)(3,15)(4,17)(5,37)(6,35)(7,39)(8,33)(9,42)(10,49)(11,44)(12,51)(14,48)(16,46)(18,47)(20,45)(21,52)(22,43)(23,50)(24,41)(25,59)(26,55)(27,57)(28,53)(29,60)(30,56)(31,58)(32,54)(34,61)(36,63)(38,62)(40,64) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,53,47,58),(2,54,48,59),(3,55,45,60),(4,56,46,57),(5,42,61,52),(6,43,62,49),(7,44,63,50),(8,41,64,51),(9,34,21,37),(10,35,22,38),(11,36,23,39),(12,33,24,40),(13,28,18,31),(14,25,19,32),(15,26,20,29),(16,27,17,30)], [(2,46),(4,48),(5,52),(6,41),(7,50),(8,43),(9,39),(10,35),(11,37),(12,33),(13,20),(15,18),(21,36),(22,38),(23,34),(24,40),(25,32),(26,28),(27,30),(29,31),(42,61),(44,63),(49,64),(51,62),(53,58),(54,56),(55,60),(57,59)], [(1,44,45,52),(2,49,46,41),(3,42,47,50),(4,51,48,43),(5,58,63,55),(6,56,64,59),(7,60,61,53),(8,54,62,57),(9,18,23,15),(10,16,24,19),(11,20,21,13),(12,14,22,17),(25,35,30,40),(26,37,31,36),(27,33,32,38),(28,39,29,34)], [(1,13),(2,19),(3,15),(4,17),(5,37),(6,35),(7,39),(8,33),(9,42),(10,49),(11,44),(12,51),(14,48),(16,46),(18,47),(20,45),(21,52),(22,43),(23,50),(24,41),(25,59),(26,55),(27,57),(28,53),(29,60),(30,56),(31,58),(32,54),(34,61),(36,63),(38,62),(40,64)]])

Matrix representation of C42.425C23 in GL8(𝔽17)

110900000
011090000
110600000
011060000
00000161111
000010011
000011612
00000111616
,
01000000
160000000
00010000
001600000
00000100
000016000
00000012
0000001616
,
10000000
016000000
00100000
000160000
00001000
000001600
0000001615
00000001
,
33000000
314000000
00330000
003140000
00003310
00003141615
000015006
00001130
,
101500000
010150000
001600000
000160000
000001300
00004000
000010748
00000101313

G:=sub<GL(8,GF(17))| [11,0,11,0,0,0,0,0,0,11,0,11,0,0,0,0,9,0,6,0,0,0,0,0,0,9,0,6,0,0,0,0,0,0,0,0,0,1,11,0,0,0,0,0,16,0,6,11,0,0,0,0,11,0,1,16,0,0,0,0,11,11,2,16],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,2,16],[1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,15,1],[3,3,0,0,0,0,0,0,3,14,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,3,14,0,0,0,0,0,0,0,0,3,3,15,1,0,0,0,0,3,14,0,1,0,0,0,0,1,16,0,3,0,0,0,0,0,15,6,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,15,0,16,0,0,0,0,0,0,15,0,16,0,0,0,0,0,0,0,0,0,4,10,0,0,0,0,0,13,0,7,10,0,0,0,0,0,0,4,13,0,0,0,0,0,0,8,13] >;

C42.425C23 in GAP, Magma, Sage, TeX

C_4^2._{425}C_2^3
% in TeX

G:=Group("C4^2.425C2^3");
// GroupNames label

G:=SmallGroup(128,1975);
// by ID

G=gap.SmallGroup(128,1975);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,568,758,219,100,675,1018,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=a^2*b^2,a*b=b*a,c*a*c=d*a*d^-1=a^-1*b^2,e*a*e=a*b^2,c*b*c=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b*c,e*c*e=a^2*b^2*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.425C23 in TeX

׿
×
𝔽